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The Prob|em Two-dataset evaluation vs. OD-test (n = 46/bar, 308/bar)

In a typical supervised learning scenario, we assume the samples are
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drawn from a fixed distribution. What can go wrong in practice? > mmm Two Datasets
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OOD Detectors detect the examples where the model cannot give reliable predictions.
 We show that current evaluation strategies over-estimate accuracy. A two-dataset evaluation scheme can be too optimistic In
 We present a more practical evaluation framework. identifying the best available method.

e We show that the state-of-art methods are not reliable in practical scenarios.

Mean test accuracy, averaging over D¢, D.,, D, (n = 308/bar)

OD-Test: A less biased evaluation strategy

. - i .. ) .. ) Mean Test Accuracy Mean Test Accuracy
® A binary classifier: in-distribution vs. out-of-distribution (OOD). © o o o o 5 o o o o g
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® \We do not have access to OOD samples in practice. OpenMax/Res | &= 58.44%

® Supervised outlier detection: train a binary classifier on a fixed PixelCNN++ | e 60.74%
mixture of outlier and inlier datasets (two-dataset evaluation). OpenMax/VGG - ©a.81%
. , o 1-VNNSVM [ e 65.16%
® Complex models can easily overfit to two-dataset classifications. DeepEns./Res [IIIIE= 65.68%
Previous work uses a fixed mixture of two low-dimensional datasets. 8-VNNSVM e 65.78%
We show that it yields unreliably optimistic results (see top right). 2-VNNSVM [ = 66.00% PbThresh/VGG [ == 72.63%
4-VNNSVM [ e 66.54% 4-NNSVM — 72.64%
® A more realistic setup with three datasets (OD-Test): BinClass/VGG [ &= 68.81% DeepEns./VGG - 72.84%
Given an inlier dataset D and outlier datasets D,,,, and D;. ':gflv"";ies - 65.98% i::;“: - 12.95%
inClass/Res _—69.06% - e 73.37%
1. Observe a clean Ds. ScoreSVM/Res [ 69.88% MC-Dropout = 73.47%
2. Learn a binary reject function r on the mixture of D. and D,,,. PbThresh/Res AEThre./BCE — 74.43%
3. Test the reject function on the mixture of D, and D;. AEThre./MSE Log.SVMNVGG == 74.68%
Repeat over different outlier datasets to obtain a reliable estimate of ODIN/Res - | 76.99%
ScoreSVM/VGG e 77.17%
performance on D.. ODIN/VGG - 78.66%
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® Uncertainty: MC-Dropout [1], DeepEnsemble [2]. D m=m ScoreSVM/Res
® Density estimation: Pixel CNN++ [3].
® Open-set recognition: OpenMax [4]. A Short Summary of Results

® Deep learning literature: ODIN [5], Probability Threshold.
e Outlier/Anomaly detection: K-NN, Reconstruction-based.

® Other: K-NN on Autoencoder and VAE latent representations, SVM
on logits, K-way logistic regression loss, direct binary classification.

® A two-dataset evaluation can make us too optimistic.

e Simpler/cheaper data mining approaches work as well as the
recently proposed methods in low-dimensional settings.

e None of the methods work well on high-dimensional data.

Models.

® \/GG-16 is better than Resnet-50 for this task, even though the
® /GG-16 e Resnet-50 . : e L
Datasets Resnet model has a higher image classification accuracy.

® For a more reliable assessment, future work should use
OD-test instead of two-dataset evaluations.

® MINIST @ FashionMNIST @ NotMNIST e CIFAR10 e CIFAR100
@ STL10 e Tinylmagenet @ Uniform Noise ® Gaussian Noise
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